Mosquito Laser

mosquito destruction by mr bingo

The mosquito laser is a device invented by astrophysicist Lowell Wood to kill large numbers of mosquitoes to reduce the chance of people being infected with malaria. Although originally introduced in the early 1980s, the idea was not substantially researched until decades later.

In 2007, the Bill & Melinda Gates Foundation requested Intellectual Ventures LLC to find a way to fight and eventually end malaria. Intellectual Ventures resurrected the idea of using lasers to kill mosquitoes and now has a working prototype. The idea has been criticized because most areas where malaria runs rampant do not have reliable electrical power.

At a brainstorming session in 2007, to think of solutions for malaria, Dr. Wood, one of the architects of the Strategic Defense Initiative (SDI), also known as ‘Star Wars,’ suggested designing a system to kill mosquitoes with lasers. Soon after, the idea was followed up by many scientists at Intellectual Ventures and mosquitoes were being shot down within a year. The original Idea incorporates laser technology that stems from the SDI, scaled down to insects. The laser, humorously referred to by some as a WMD (Weapon of Mosquito Destruction), works effectively at a range of 100 feet (approx. 30 meters).

Although the malaria-carrying parasite is gone from most developed nations, it is getting worse in undeveloped countries, and it is also becoming more resistant to drugs. Rather than continue with drugs or other pesticides, the mosquito laser takes a more direct approach by instantly killing mosquitoes or burning off their wings and rendering them harmless. One of the design goals was to minimize collateral damage to other species and the environment.

Several concepts were explored, considering cost and efficiency. Devised implementations included a hand-held model, flying drones, and the current prototype, the Photonic Fence. The device works by using infra-red Light Emitting Diode (LED) lamps on a fence post to create a field of light. This field of light reflects from retroreflective material on another fence post, much like that used on roads and highway signs, and bounces back to its source. This field of light is monitored by charge-coupled devices (CCDs) similar to the ones used in consumer digital cameras. These cameras are situated on both fence posts and detect shadows in the light between the posts. Once an insect is detected, a non-lethal laser is fired at it. This non-lethal laser is used to determine the size of the insect, and the frequency at which its wings are beating.

The information gathered by the non-lethal laser can be used to determine the type of insect, and even its gender because wing beat patterns are unique to each species and gender. This is important in preventing malaria because only female mosquitoes bite humans. Also, only mosquitoes of the genus Anopheles carry the malaria-causing parasite of the genus plasmodium. All of these determining calculations are done using a custom image processing board using software written specifically for this application. Once the software confirms that the insect is of the targeted species and gender, a safety check makes sure that nothing is in the way of the laser and the mosquito. Once this safety check is completed, the lethal laser is given permission to shoot.

The lethal laser could be one of several low-power consumer lasers, but blue lasers, similar to the ones found in Blu-ray players, are thought to have great potential. Blue lasers are used in preference to other color lasers, such as green and red because they have higher energy, and they also minimize the amount of power used. The lethal laser is fired at the mosquito and is able to kill it mid-flight. The exact reason for the mosquito’s death is unknown, but it is likely that the mosquito simply overheats and dies.

The Photonic Fence is thought to be best deployed surrounding buildings, such as hospitals and schools, or even whole villages, in an effort to reduce the spread of malaria. According to Nathan Myhrvold, co-founder of Intellectual Ventures, the Photonic Fence can kill up to 50 to 100 mosquitoes a second, at a maximum range of 100 ft.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s