Guano Islands Act

Guano [gwah-noh] is the accumulated excrement of seabirds and bats. As a manure, guano is a highly effective fertilizer due to its exceptionally high content of nitrogen, phosphate and potassium: key nutrients essential for plant growth. Guano was also, to a lesser extent, sought for the production of gunpowder and other explosive materials.

The 19th-century guano trade played a pivotal role in the development of modern input-intensive farming, but its demand began to decline after the discovery of the Haber–Bosch process of nitrogen fixing led to the production of synthetic fertilizers. The demand for guano spurred the human colonization of remote bird islands in many parts of the world, resulting in some of the first examples of U.S. colonialism and the expansion of the British Empire.

The guano mining process resulted in ecological degradation through the loss of millions of seabirds. Unsustainable guano mining in caves alters cave shape, causing bats to abandon the roost. Guano mining also involved the poor treatment and enslavement of workers such as Chinese immigrants, Native Hawaiians, and African diaspora.

Guano is ecologically important due to its role in dispersing nutrients. Cave ecosystems, in particular, are often wholly dependent on bats to provide nutrients via their guano, which supports bacteria, fungi, invertebrates, and vertebrates. The loss of bats from a cave can result in the extinction of species that rely on their guano. Guano also has a role in shaping caves, as its high acidity results in erosion.

Guano is the namesake for one of the nucleobases that comprise RNA and DNA: guanine. Guanine was first obtained from guano by German Chemist Julius Bodo Unger, who described it as xanthine in 1844. After he was corrected, Bodo Unger published it with the new name of ‘guanine’ in 1846.

The word ‘guano’ originates from the Andean indigenous language Quechua, which refers to any form of dung used as an agricultural fertilizer. Archaeological evidence suggests that Andean people collected guano from small islands and points off the desert coast of Peru for use as a soil amendment for well over 1,500 years and perhaps as long as 5,000 years. Spanish colonial documents suggest that the rulers of the Inca Empire greatly valued guano, restricted access to it, and punished any disturbance of the birds with death. The Guanay cormorant is historically the most abundant and important producer of guano.

In 1802, Prussian geographer and explorer Alexander von Humboldt first encountered guano and began investigating its fertilizing properties at Callao in Peru, and his subsequent writings on this topic made the subject well known in Europe. Cornish chemist Humphry Davy delivered a series of lectures which he compiled into an 1813 bestselling book about the role of nitrogenous manure as a fertilizer. He highlighted the special efficacy of Peruvian guano, noting that it made the ‘sterile plains’ of Peru fruitful. Though Europe had marine seabird colonies and thus, guano, it was of poorer quality because its potency was leached by high levels of rainfall and humidity.

The arrival of commercial whaling on the Pacific coast of South America contributed to scaling of its guano industry. Whaling vessels carried consumer goods to Peru such as textiles, flour, and lard; unequal trade meant that ships returning north were often half empty, leaving entrepreneurs in search of profitable goods that could be exported. In 1840, Peruvian politician and entrepreneur Francisco Quirós y Ampudia negotiated a deal to commercialize guano export among a merchant house in Liverpool, a group of French businessmen, and the Peruvian government.

This agreement resulted in the abolition of all preexisting claims to Peruvian guano; thereafter, it was the exclusive resource of the State. By nationalizing its guano resources, the Peruvian government was able to collect royalties on its sale, becoming the country’s largest source of revenue. Some of this income was used by the State to free its more than 25,000 black slaves. Peru also used guano revenue to abolish the head tax on its indigenous citizens. This export of guano from Peru to Europe has been suggested as the vehicle that brought a virulent strain of potato blight from the Andean highlands that began the Irish Potato Famine.

Soon guano was sourced from regions besides Peru. By 1846, 462,057 metric tons of guano had been exported from Ichaboe Island, off the coast of Namibia, and surrounding islands to Great Britain. Guano pirating took off in other regions as well, causing prices to plummet and more consumers to try it. The biggest markets for guano from 1840–1879 were in Great Britain, the Low Countries, Germany, and the United States.

By the late 1860s, it became apparent that Peru’s most productive guano site, the Chincha Islands, was nearing depletion. This caused guano mining to shift to other islands north and south of the Chincha Islands. Despite this near exhaustion, Peru achieved its greatest ever export of guano in 1870 at more than 700,000 metric tons. Concern of exhaustion was ameliorated by the discovery of a new Peruvian resource: sodium nitrate, also called Chile saltpeter. After 1870, the use of Peruvian guano as a fertilizer was eclipsed by Chile saltpeter in the form of caliche (a sedimentary rock) extraction from the interior of the Atacama Desert, close to the guano areas.

The Guano Age ended with the War of the Pacific (1879–1884), which saw Chilean marines invade coastal Bolivia to claim its guano and saltpeter resources. Knowing that Bolivia and Peru had a mutual defense agreement, Chile mounted a preemptive strike on Peru, resulting in its occupation of the Tarapacá, which included Peru’s guano islands. With the Treaty of Ancón of 1884, the War of the Pacific ended. Bolivia ceded its entire coastline to Chile, which also gained half of Peru’s guano income from the 1880s and its guano islands. The conflict ended with Chilean control over the most valuable nitrogen resources in the world. Chile’s national treasury grew by 900% between 1879 and 1902 thanks to taxes coming from the newly acquired lands.

The demand for guano led the United States to pass the ‘Guano Islands Act’ in 1856, which gave U.S. citizens discovering a source of guano on an unclaimed island exclusive rights to the deposits. In 1857, the U.S. began annexing uninhabited islands in the Pacific and Caribbean, totaling nearly 100. Several of these islands are still officially U.S. territories. Conditions on annexed guano islands were poor for workers, resulting in a rebellion on Navassa Island in 1889 where black workers killed their white overseers.

In defending the workers, lawyer Everett J. Waring argued that the men could not be tried by U.S. law because the guano islands were not legally part of the country. The case went to the Supreme Court of the United States where it was decided in ‘Jones v. United States’ (1890). The Court decided that Navassa Island and other guano islands were legally part of the U.S. American historian Daniel Immerwahr claimed that by establishing these land claims as constitutional, the Court laid the ‘basis for the legal foundation for the U.S. empire.’ The ‘Guano Islands Act’ is now considered ‘America’s first imperialist experiment.’

Other countries also used their desire for guano as a reason to expand their empires. The United Kingdom claimed Kiritimati and Malden Island. Others nations that claimed guano islands included Australia, France, Germany, Japan, and Mexico.

In 1913, a factory in Germany began the first large-scale synthesis of ammonia using German chemist Fritz Haber’s catalytic process. The scaling of this energy-intensive process meant that farmers could cease practices such as crop rotation with nitrogen-fixing legumes or the application of naturally derived fertilizers such as guano. The international trade of guano and nitrates such as Chile saltpeter declined as artificially synthesized fertilizers became more widely used. With the rising popularity of organic food in the twenty-first century, the demand for guano has started to rise again.

In the U.S., bat guano was harvested from caves as early as the 1780s to manufacture gunpowder. During the American Civil War (1861–1865), the Union’s blockade of the southern Confederate States of America meant that the Confederacy resorted to mining guano from caves to produce saltpeter. In Australia, the first documented claim on Naracoorte’s Bat Cave guano deposits was in 1867. Guano mining in the country remained a localized and small industry. In modern times, bat guano is used in low levels in developed countries. It remains an important resource in developing countries, particularly in Asia.

Peru’s guano islands experienced severe ecological effects as a result of unsustainable mining. In the late 1800s, approximately 53 million seabirds lived on the twenty-two islands. As of 2011, only 4.2 million seabirds lived there. After realizing the depletion of guano in the Guano Age, the Peruvian government recognized that it needed to conserve the seabirds. In 1906, American zoologist Robert Ervin Coker was hired by the Peruvian government to create management plans for its marine species, including the seabirds.

Despite these policy hcnages, the seabird population continued to decline, which was exacerbated by the 1911 El Niño–Southern Oscillation. In 1913, Scottish ornithologist Henry Ogg Forbes authored a report on behalf of the Peruvian Corporation focusing on how human actions harmed the birds and subsequent guano production. Forbes suggested additional policies to conserve the seabirds, including keeping unauthorized visitors a mile away from guano islands at all times, eliminating all the birds’ natural predators, armed patrols of the islands, and decreasing the frequency of harvest on each island to once every three to four years.

Unlike bird guano which is deposited on the surface of islands, bat guano can be deep within caves. Cave structure is often altered via explosives or excavation to facilitate extraction of the guano, which changes the cave’s microclimate. Bats are sensitive to cave microclimate, and such changes can cause them to abandon the cave as a roost, as happened when Robertson Cave in Australia had a hole opened in its ceiling for guano mining. Guano mining also introduces artificial light into caves; one cave in the U.S. state of New Mexico was abandoned by its bat colony after the installation of electric lights.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.