An autostereogram [aw-toh-ster-ee-uh-gram] is a stereogram (an optical illusion of depth created from flat images), designed to create the visual illusion of a three-dimensional scene from a two-dimensional image in the human brain.

In order to perceive 3D shapes in these autostereograms, the brain must overcome the normally automatic coordination between focusing and vergence (the simultaneous movement of both eyes in opposite directions to obtain or maintain single binocular vision).

The simplest type of autostereogram consists of horizontally repeating patterns and is known as a wallpaper autostereogram. When viewed with proper vergence, the repeating patterns appear to float above or below the background. The Magic Eye books feature another type of autostereogram called a random dot autostereogram. In this type of autostereogram, every pixel in the image is computed from a pattern strip and a depth map. A hidden 3D scene emerges when the image is viewed with the correct vergence.

Autostereograms are similar to normal stereograms except they are viewed without a stereoscope. A stereoscope presents 2D images of the same object from slightly different angles to the left eye and the right eye, allowing the brain to reconstruct the original object via binocular disparity. With an autostereogram, the brain receives repeating 2D patterns from both eyes, but fails to correctly match them. It pairs two adjacent patterns into a virtual object based on wrong parallax angles, thus placing the virtual object at a depth different from that of the autostereogram image.

There are two ways an autostereogram can be viewed: wall-eyed and cross-eyed. Most autostereograms are designed to be viewed in only one way, which is usually wall-eyed. Wall-eyed viewing requires that the two eyes adopt a relatively parallel angle, while cross-eyed viewing requires a relatively convergent angle.

As with a photographic camera, it is easier to make the eye focus on an object when there is intense ambient light. With intense lighting, the eye can constrict the iris, yet allow enough light to reach the retina. The more the eye resembles a pinhole camera, the less it depends on focusing through the lens. In other words, the degree of decoupling between focusing and convergence needed to visualize an autostereogram is reduced. This places less strain on the brain. Therefore, it may be easier for first-time autostereogram viewers to ‘see’ their first 3D images if they attempt this feat with bright lighting.

Vergence control is important in being able to see 3D images. Thus it may help to concentrate on converging/diverging the two eyes to shift images that reach the two eyes, instead of trying to see a clear, focused image. Although the lens adjusts reflexively in order to produce clear, focused images, voluntary control over this process is possible. The viewer alternates instead between converging and diverging the two eyes, in the process seeing ‘double images’ typically seen when one is drunk or otherwise intoxicated. Eventually the brain will successfully match a pair of patterns reported by the two eyes and lock onto this particular degree of convergence. The brain will also adjust eye lenses to get a clear image of the matched pair. Once this is done, the images around the matched patterns quickly become clear as the brain matches additional patterns using roughly the same degree of convergence.

The majority of autostereograms are designed for divergent (wall-eyed) viewing. One way to help the brain concentrate on divergence instead of focusing is to hold the picture in front of the face, with the nose touching the picture. With the picture so close to their eyes, most people cannot focus on the picture. The brain may give up trying to move eye muscles in order to get a clear picture. If one slowly pulls back the picture away from the face, while refraining from focusing or rotating eyes, at some point the brain will lock onto a pair of patterns when the distance between them matches the current convergence degree of the two eyeballs.

Another way is to stare at an object behind the picture in an attempt to establish proper divergence, while keeping part of the eyesight fixed on the picture to convince the brain to focus on the picture. A modified method has the viewer stare at her reflection on the shiny surface of the picture, which the brain perceives as being located twice as far away as the picture itself. This may help persuade the brain to adopt the required divergence while focusing on the nearby picture.

For crossed-eyed autostereograms, a different approach needs to be taken. The viewer may hold one finger between their eyes and move it slowly towards the picture, maintaining focus on the finger at all times, until they are correctly focused on the spot that will allow them to view the illusion.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.