Helmholtz Resonator


Helmholtz [helm-hohlts] resonance is the phenomenon of air resonance in a cavity, such as when one blows across the top of an empty bottle. The name comes from a device created in the 1850s by Hermann von Helmholtz, the ‘Helmholtz resonator,’ which he, the author of the classic study of acoustic science, used to identify the various frequencies or musical pitches present in music and other complex sounds.

When air is forced into a cavity, the pressure inside increases. When the external force pushing the air into the cavity is removed, the higher-pressure air inside will flow out. However, this surge of air flowing out will tend to over-compensate, due to the inertia of the air in the neck, and the cavity will be left at a pressure slightly lower than the outside, causing air to be drawn back in. This process repeats with the magnitude of the pressure changes decreasing each time.

This effect is akin to that of a bungee-jumper bouncing on the end of a bungee rope, or a mass attached to a spring. Air trapped in the chamber acts as a spring. Changes in the dimensions of the chamber adjust the properties of the spring: a larger chamber would make for a weaker spring, and vice-versa.

The air in the port (the neck of the chamber) has mass. Since it is in motion, it possesses some momentum. A longer port would make for a larger mass, and vice-versa. The diameter of the port is related to the mass of air and the volume of the chamber. A port that is too small in area for the chamber volume will ‘choke’ the flow while one that is too large in area for the chamber volume tends to reduce the momentum of the air in the port.

Helmholtz resonance finds application in internal combustion engines, subwoofers and acoustics. In stringed instruments, such as the guitar and violin, the resonance curve of the instrument has the Helmholtz resonance as one of its peaks, along with other peaks coming from resonances of the vibration of the wood. An ocarina is essentially a Helmholtz resonator where the area of the neck can be easily varied to produce different tones. The West African djembe has a relatively small neck area, giving it a deep bass tone.

Helmholtz resonators are used in architectural acoustics to reduce undesirable low frequency sounds (standing waves, etc.) by building a resonator tuned to the problem frequency, thereby eliminating it.

Helmholtz resonators are also used to build acoustic liners for reducing the noise of aircraft engines, for example. These acoustic liners are made of two components: a simple sheet of metal (or other material) perforated with little holes spaced out in a regular or irregular pattern; this is called a resistive sheet; a series of so-called honeycomb cavities (holes with a honeycomb shape, but in fact only their volume matters).

Such acoustic liners are used in most of today’s aircraft engines. The perforated sheet is usually visible from inside or outside the airplane; the honeycomb is just under it. The thickness of the perforated sheet is of importance, as shown above.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.