Delayed Gratification

Delayed gratification denotes a person’s ability to wait in order to obtain something that he or she wants. This intellectual attribute is also called impulse control, will power, self control, and ‘low’ time preference, in economics. Delay discounting is defined as ‘the preference for smaller immediate rewards over larger but delayed rewards and to the well established fact that the subjective value of reward decreases with increasing delay to its receipt.’ Sociologically, good impulse control is considered a positive personality trait.

Moreover, people who lack the psychological trait of being able to delay gratification are said to require instant gratification and might suffer poor impulse control. The Stanford Marshmallow Experiment indicates that good impulse control might be psychologically important for academic achievement and for success in adult life.

The psychoanalytic term impulse control derives from the Freudian psychology theory of personality (Id, ego, and super-ego) wherein the Id is driven by the pleasure principle and primarily unconscious. The Ego is known as the reality principle and is the most conscious while mediating between the Id and Superego and the demands of reality. The Superego, sometimes referred to as the morality principle, embodies social constraints and moral obligations during conscious and unconscious states. There have been two distinct theoretical views of delayed gratification proposed. The first, promulgated in 1950, concerns individual differences in ego control which is defined as ‘the individual’s generalized disposition or capacity to modulate and contain impulses, feelings and desires; to inhibit action.’

The second view relates to ego resiliency, and holds that delayed gratification is ‘assumed to be adaptive, and so emphasis is placed on the cognitive competencies that constitute the ‘ability’ to delay.’ This research done by Funder and Block showed that ego control, ego resiliency, and IQ involve some correlation between delayed gratification and the workings of the ego. The term ego control is defined as an individual’s capacity to maintain impulses, feelings, and desires.

Ego resiliency focuses on people that describe themselves as competent and intelligent individuals that adapt in situations under stress and can vary their strategies of functioning cognitively or behaviorally in certain contexts. That is the higher the motivation toward an immediate reward, the more pronounced individual differences will be concerning the functioning of each persons ego. Accordingly, a person who is unable to delay gratification might possess an imbalanced psychic apparatus wherein the Id cannot be controlled by the ego and super-ego.

To test the theory of a person’s ability to delay gratification, the Stanford Marshmallow Experiment (1972) studied a group of four-year-old children, each of whom was given one marshmallow, but promised two on condition that he or she wait twenty minutes, before eating the first marshmallow. Some children were able to wait the twenty minutes, and some were not. The university researchers then studied the developmental progress of each participant child into adolescence, and reported that children able to delay gratification (wait) were psychologically better adjusted, more dependable persons, and, as high school students, scored significantly higher on the SAT.

More recently, a 1994 reported that children afflicted with fetal alcohol syndrome are less able to delay gratification, indicating, perhaps, that poor impulse control might originate biologically, in the brain. Past research has focused on ego functioning in individuals that were considered normal individuals and also emotionally disturbed individuals. The findings show that there is no differences in these two groups and that both groups progress towards better performance as their age increases.

Delayed gratification or deferred gratification, the ability to wait for something you would like, is an animal behavior that can be linked to delay discounting, ecological factors, individual fitness, and neurobiological mechanisms. Research for this behavior has been conducted with animals such as capuchin monkeys, tamarins, marmosets, rats, and pigeons. When animals are faced with a choice to either wait for a reward, or receive a reward right away, the discounting of the reward is hyperbolic (i.e. they undervalue later rewards). As the length of time of waiting for a reward increases, the reward is discounted at a gradual rate. Empirical data have suggested that exponential discounting, rewards discounting at a constant rate per unit of waiting time, only occurs when there are random interruptions in foraging .

Discounting can also be related to the risk sensitivity of animals. Rather than relating risk to delay, risk sensitivity acts as a function of delay discounting. In a study conducted by Haden and Platt, macaque monkeys were given the choice of a medium reward that they knew they would receive, versus a more risky choice. The riskier choice would reward the monkey with a large reward fifty percent of the time, and a small reward the other fifty percent. The ultimate payoff was the same, but the monkeys preferred the riskier choice. They speculated that the monkeys did not see their action as risky, but rather as a large, delayed reward. They reasoned that the monkeys viewed the large reward as certain: if they did not get the large reward the first time around, they would eventually get it, but at a longer delay.

To test for this theory, they gave the same test while varying the time between the opportunities to choose a reward. They found that as the interval increased, the number of times that the monkeys chose the more risky reward decreased. While this occurred in macaque monkeys, the varying interval time did not affect pigeons’ choices in another study. This suggests that research looking into varying risk sensitivity of different species is needed. When provided a choice between a small, short delay reward, and a large, long delay reward, there is an impulsive preference for the former. Additionally, as the delay time for the small/short and large/long reward increases, there is a shift in preference for the larger reward. This evidence only supports hyperbolic discounting, not exponential.

Although predicting reward preference seems simple when using empirical models, there are a number of ecological factors that seem to affect the delayed gratification behavior of animals. In real world situations, ‘discounting makes sense because of the inherent uncertainty of future payoffs.’ One study looked at how reward discounting is context specific. By differing the time and space between small and large rewards, they were able to test how these factors affected the decision making in tamarins and marmosets. They showed that tamarins will travel longer distances for larger food rewards, but will not wait as long as marmosets.

Conversely, marmosets will wait longer, but will not travel as far. They then concluded that this discounting behavior directly correlates to the normal feeding behavior of species. The tamarins feed over large distances, looking for insects. Capturing and eating insects requires a quick and impulsive decision and action. The marmosets, on the other hand, eat tree sap, which takes more time to secrete, but does not require that the marmosets to cover large distances.

There are costs and risks that are associated with delaying gratification behavior. One such cost is the basic opportunity cost associated with time spent waiting. While waiting, individuals lose time that could be used to find other food. There are also two risks associated with being patient. First, there is a risk that someone else might get to the food first, also known as an interruption risk. Second, there is the risk that the chance to get the reward will be cut short, perhaps by a predator, also known as a termination risk. These costs and risks create situations in which the fitness of the individual is threatened.

There are several examples that show how reward delay occurs in the real world. For example, animals that eat fruit have the option of eating unripe fruit right away, or waiting, delaying gratification, until it becomes ripe. The interruption risk plays a part here, because if the individual forgoes the unripe fruit, there is a chance that another individual may come along and get to it first. Also, in extractive foraging, such as with nuts and shellfish, the outer shell creates a delay.

There are several neurobiological studies that address the mechanisms involved with processing reward delays. It has been suggested that there are specific sections of the brain that process this information. These sections may be ‘modulated by the balance of the neurotransmitters dopamine and serotonin.’ The physiological similarities between animals and humans have led to more comparative research between the two groups.

One Trackback to “Delayed Gratification”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.