Rapture of the Nerds


‘Rapture of the Nerds’ is a derisive term for the technological singularity (a theorized future period of superhuman intelligence). Some critics assert that no computer or machine will ever achieve human intelligence, while others hold that the definition of intelligence is irrelevant if the net result is the same.

Cognitive scientist Steven Pinker stated in 2008, ‘There is not the slightest reason to believe in a coming singularity. The fact that you can visualize a future in your imagination is not evidence that it is likely or even possible. Look at domed cities, jet-pack commuting, underwater cities, mile-high buildings, and nuclear-powered automobiles—all staples of futuristic fantasies when I was a child that have never arrived. Sheer processing power is not a pixie dust that magically solves all your problems.’

IT entrepreneur Martin Ford in ‘The Lights in the Tunnel: Automation, Accelerating Technology and the Economy of the Future’ postulates a ‘technology paradox’ in that before the singularity could occur most routine jobs in the economy would be automated, since this would require a level of technology inferior to that of the singularity. This would cause massive unemployment and plummeting consumer demand, which in turn would destroy the incentive to invest in the technologies that would be required to bring about the Singularity. Job displacement is increasingly no longer limited to work traditionally considered to be ‘routine.’

Futurist Jared Diamond, in ‘Collapse: How Societies Choose to Fail or Succeed,’ argues that cultures self-limit when they exceed the sustainable carrying capacity of their environment, and the consumption of strategic resources (frequently timber, soils or water) creates a deleterious positive feedback loop that leads eventually to social collapse and technological retrogression.

Physicists Theodore Modis and Jonathan Huebner argue that the rate of technological innovation has not only ceased to rise, but is actually now declining. Computer clock rates are slowing, even while Moore’s prediction of exponentially increasing circuit density continues to hold. This is due to excessive heat build-up from the chip, which cannot be dissipated quickly enough to prevent the chip from melting when operating at higher speeds. Advancements in speed may be possible in the future by virtue of more power-efficient CPU designs and multi-cell processors.

Andrew Kennedy, in his 2006 paper for the British Interplanetary Society discussing change and the growth in space travel velocities, stated that although long-term overall growth is inevitable, it is small, embodying both ups and downs, and noted, ‘New technologies follow known laws of power use and information spread and are obliged to connect with what already exists. Remarkable theoretical discoveries, if they end up being used at all, play their part in maintaining the growth rate: they do not make its plotted curve… redundant.’

He stated that exponential growth is no predictor in itself, and illustrated this with examples such as quantum theory. The quantum was conceived in 1900, and quantum theory was in existence and accepted approximately 25 years later. However, it took over 40 years for Richard Feynman and others to produce meaningful numbers from the theory. Bethe understood nuclear fusion in 1935, but 75 years later fusion reactors are still only used in experimental settings. Similarly, quantum entanglement was understood in 1935 but not at the point of being used in practice until the 21st century.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s