Robonaut is a humanoid robotic development project conducted by the Dextrous Robotics Laboratory at NASA’s Johnson Space Center (JSC) in Houston. Robonaut differs from other current space-faring robots (such as robotic arms, cranes and exploration rovers), which are designed to move large objects; Robonaut’s tasks require more dexterity. The core idea behind the Robonaut series is to have a humanoid machine work alongside astronauts. Its form factor and dexterity are designed such that Robonaut can use space tools and work in similar environments suited to astronauts.

The latest Robonaut version, R2, the first US-built robot on the ISS, delivered by the Space Shuttle in 2011, is a robotic torso designed to assist with crew EVA’s. However, Robonaut 2 does not have adequate protection needed to exist outside the space station and enhancements and modifications would be required to allow it to move around the station’s interior.

Work on the first Robonaut began in 1997. The idea was to build a humanoid robot that could assist astronauts on tasks in which another pair of hands would be helpful or to venture forth to perform jobs either too dangerous for crew members to risk or too mundane for them to spend time on. This system wouldn’t need specialized tools and would be able to use the same ones as the astronauts. The initial design of Robonaut was for it to be used as an end-effector for the robotic arm on the International Space Station, where it could serve as an alternative to human extravehicular activity for external maintenance on the station.

Robonaut 1 (R1) was the first model. The two Robonaut versions (R1A and R1B) had many partners including DARPA. None were flown to space. Other designs for Robonaut propose uses for teleoperation on planetary surfaces, where Robonaut could explore a planetary surface while receiving instructions from orbiting astronauts above. Robonaut B was introduced in 2002, R1B is a portable version of R1. R1 had several lower bodies. One of these was the Zero-G Leg, which could climb using the external handrails. Another was the Robotic Mobility Platform (RMP), developed in 2003, it is a base with two wheels using a Segway PT. And the four wheeled Centaur 1, which was developed in 2006. Robonaut has participated in NASA’s Desert Research and Technology Studies field trials in the Arizona desert.

In 2006, the automotive company General Motors expressed interest in the project and proposed to team up with NASA. In 2007 a Space Act Agreement was signed that allowed GM and NASA to work together on the next generation of Robonaut.

In 2010, Robonaut 2 (R2) was revealed to the public. R2 is capable of speeds more than four times faster than R1, is more compact, more dexterous, and includes a deeper and wider range of sensing. It can move its arms up to 2 m/s, has a 40 lb payload capacity and its hands have a grasping force of roughly 5 lbs. per finger. There are over 350 sensors and 38 PowerPC processors in the robot. Station crew members will be able to operate R2, as will controllers on the ground; both will do so using telepresence. One of the improvements over the previous Robonaut generation is that R2 doesn’t need constant supervision. R2 was designed to be set to tasks and then carry them through autonomously with periodic status checks.

R2 was designed as a prototype to be used on Earth but mission managers were impressed by it and chose to send it to the ISS. Various upgrades were made to qualify it for use inside the station. The outer skin materials were exchanged to meet the station’s flammability requirements, shielding was added to reduce electromagnetic interference, processors were upgraded to increase the robot’s radiation tolerance, the original fans were replaced with quieter ones to accommodate the station’s noise requirements, and the power system was rewired to run on the station’s direct current system rather than the alternating current used on the ground.

Robonaut 2 was launched on STS-133 in 2011, and delivered to the ISS. The conditions aboard the space station provide a proving ground for robots to work shoulder to shoulder with people in microgravity. Once this has been demonstrated inside the station, software upgrades and lower bodies may be added, allowing R2 to move around the interior of the station and perform maintenance tasks, such as vacuuming or cleaning filters. Further upgrades could be added to allow R2 to work outside in the vacuum of space, where R2 could help space walkers perform repairs, make additions to the station or conduct scientific experiments. There are no plans to return the launched R2 back to earth.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.