## Flywheel

A flywheel is a heavy disk or wheel that is attached to a rotating shaft. Flywheels are used for storage of kinetic energy. The momentum of the flywheel causes it to not change its rotational speed easily. Because of this, flywheels help to keep the shaft rotating at the same speed. This helps when the torque applied to the shaft changes often.

Torque refers to turning or twisting force. If a force is used to begin to spin an object, or to stop an object from spinning, torque is required. Uneven torque can change the speed of rotation. Because the flywheel resists changes in speed, it decreases the effects of uneven torque. Engines which use pistons to provide power usually have uneven torque and use flywheels to fix this problem.

It takes energy to get a wheel (any wheel) to rotate. If there is little friction (good bearings) then it will keep rotating a long time. When energy is needed, it can be taken from the wheel again. So it is a simple mechanical means of storing energy. The amount of energy stored is a function of the weight and the speed of rotation – making a heavier wheel rotate faster takes more energy. Another factor is the radius (size) because the farther from the axis a part of the wheel is, the more energy it takes to make is rotate.

Some buses have a fly-wheel that is used for stopping and starting. When the bus stops (e.g. for a traffic light), the fly-wheel is connected to the wheels, so the rotational energy is transferred to it, so the bus will slow down while the fly-wheel speeds up. Then, when the bus has to start driving again, it is connected again and the energy is transferred back. The flywheel has been used since ancient times, the most common traditional example being the potter’s wheel. In the Industrial Revolution, James Watt contributed to the development of the flywheel in the steam engine, and his contemporary James Pickard used a flywheel combined with a crank to transform reciprocating into rotary motion.

Flywheels are typically made of steel and rotate on conventional bearings; these are generally limited to a revolution rate of a few thousand RPM. Some modern flywheels are made of carbon fiber materials and employ magnetic bearings, enabling them to revolve at speeds up to 60,000 RPM.

A flywheel may also be used to supply intermittent pulses of energy at transfer rates that exceed the abilities of its energy source, or when such pulses would disrupt the energy supply (e.g., public electric network). This is achieved by accumulating stored energy in the flywheel over a period of time, at a rate that is compatible with the energy source, and then releasing that energy at a much higher rate over a relatively short time. For example, flywheels are used in punching machines and riveting machines, where they store energy from the motor and release it during the punching or riveting operation.

The phenomenon of precession (a change in the orientation of the rotational axis of a rotating body) has to be considered when using flywheels in vehicles. A rotating flywheel responds to any momentum that tends to change the direction of its axis of rotation by a resulting precession rotation. A vehicle with a vertical-axis flywheel would experience a lateral momentum when passing the top of a hill or the bottom of a valley (roll momentum in response to a pitch change). Two counter-rotating flywheels may be needed to eliminate this effect. This effect is leveraged in momentum wheels, a type of flywheel employed in satellites in which the flywheel is used to orient the satellite’s instruments without thruster rockets.